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Although the least-squares analysis of structure invariants has been successfully employed to solve a 
number of crystal structures, it is known that the values of the invariants, as predicted by existing prob- 
ability formulas, are often not quite accurate. Since the cosine invariants for triples involving only two- 
dimensional reflections may have only the discrete values + 1 in the space group P212,21, whereas 
general invariants may have any value within the allowed range of the cosine function, it should be 
relatively easy to predict the correct values of two-dimensional invariants. Consequently, these invar- 
iants were computed for an estradiol-urea (1 : 1) complex and for 6e-fluorocortisol, and they were used 
to determine basic sets of phases which were used as input to the tangent formula. Both structures were 
solved by this method and, subsequently, the relative accuracy of the triple product and MDKS rela- 
tionships for predicting the values of this type of invariant was determined using the data for these two 
structures. 

Introduction 

It is well established that a sufficiently accurate and 
large set of phases used as input to the tangent formula 
(Karle & Hauptman, 1956) usually results in extension 
of the set of known phases. For moderately complex 
structures (20 to 40 atoms) which have appreciable 
overlap in the Patterson synthesis, it is desirable to 
determine 40 to 60 phases correctly before applying 
the tangent formula. In the structures of estriol (Haupt- 
man, Fisher, Hancock & Norton, 1969) and two andro- 
stane derivatives (Hauptman, Weeks & Fisher, 1971), 
the correct phasing of this basic set was achieved 
through the least-squares analysis of structure in- 
variants cos (~Pl + ~02 + ~03) (cosine invariants), which 
were evaluated by a modification of the triple-product 
formula (Karle & Hauptman, 1957; Hauptman, 1964). 

In the case of the two androstane derivatives, statis- 
tical analysis, comparing the cosine invariants calcula- 
ted by the modified triple-product formula with the true 
values calculated from the solved structure, indicated 
that the evaluation by this formula was imperfect. 
Consequently, it was felt that an initial phasing pro- 
cedure, based on cosine invariants for triples involving 
only vectors in the centrosymmetric projections, would 
be less difficult because these 'two-dimensional' (2D) 
invariants have only two possible values ( + 1),* where- 
as the general three-dimensional (3D) invariants can 
have any value in the range - 1  to + 1. The phasing 
problem is therefore reduced to one of selecting which 
invariants are + 1. 

* In space group P212121, there are two-dimensional  triples 
of  the type (hk0, hOl, Okl), where h+k + l =  2n + 1, for which 
the cosine value must  be 0. These triples are of  no use in the 
phasing procedure  described here, because any combinat ion  
of  the permit ted  values of  the three phases is consistent  with 
the zero value of the cosine. 

For many space groups of orthorhombic or higher 
symmetry, correct phasing of a large set of two- 
dimensional reflections can be successfully extended to 
a three-dimensional solution through the tangent 
formula. This method was applied to the structures of 
estradiol.urea (1:1) and 6ct-fluorocortisol,l" both of 
which crystallize in the space group P212121. In the 
case of the estradiol, urea complex, it was not possible 
to identify unambiguously those invariants that were 
+ 1, on the basis of the results of the triple-product 
formula. The intensity statistics for estradiol.urea 
indicated greater overlap in the Patterson synthesis 
than is generally observed; indeed, it was found that 
the fraction of invariants whose value was - 1  was 
much greater than that predicted by theory in which 
such overlap was assumed not to exist. Application of a 
more recently developed formula (MDKS) (Haupt- 
man, 1972; Fisher, Hancock & Hauptman, 1970a, b) 
did afford a better evaluation of the cosine invariants 
for this structure. The structure of 6:,.-fluorocortisol did 
not have extensive overlap in the Patterson synthesis, 
and the modified triple-product evaluation of the 
invariants was adequate. 

Following the solutions of the structures, the ob- 
served values of the cosine invariants for the solved 
structures were compared with the triple product and 
MDKS predicted values in an attempt to define the 
optimal procedure for the use of these formulas in 
calculating the values of the two-dimensional in- 
variants. 

Diffraction measurements 

All crystallographic measurements were made on a 
General Electric single-crystal orienter, and the inten- 

t Essentially the same technique has been more  recently 
applied with success to the structure determinat ion of methyl- 
phenyl glyoxylate. 
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sity data were collected by the stationary-counter, 
stationary-crystal technique. The systematic absences 
in the diffraction patterns were consistent with the 
orthorhombic space group P2~2~21 for both the 
estradiol.urea complex (CIaH24Oz .CON2H4)  and 6~- 
fluorocortisol (C21Hz9OsF); the cell constants were 
a=24.631, b=7.951, and c=9.302 A for the former 
and a=13.568, b=11.447, and c=12 .247A for the 
latter. The final R values [R= Y(llFol-IF=II)/YlFol] for 
the observed data were 6% for the estradiol.urea 
complex and 7 % for 6e-fluorocortisol. 

A comparison of the observed distributions of the 
normalized structure factor magnitudes, I EI, for these 
structures with the theoretical distribution for non- 
centrosymmetric structures is presented in Table 1. 
The extremely large values of the averages <(IE [ 2 -  1) 2> 
and <([E[Z-1) 3> in the case of the estradiol.urea 
complex were the first indications that extensive over- 
lap in the Patterson function existed, and that the 
statistics of this structure would be exceptional. 

Table 1. Intensity statistics 

Theoretical 

Noncentric (3D) 
reflections 

<(IEI z -  1)2> 1.00 1.44 
<(IEI z -  1)3> 2-00 4.86 

Centric (2D) 
reflections 

<(IEI z -  1)z> 2.00 4"12 
<(IEI 2-1)3> 8.00 35.85 

Calculated Calculated 
estradiol, urea 6c~-fluorocortisol 

1 "05 
3"92 

2"32 
17-29 

Calculation of structure invariants 

The two-dimensional cosine invariants for the two 
structures were evaluated using the triple-product 
formula: 

Kgt R3 
cos(cp~+~02+~3)~ [E~E2E3I + [E~EzEa[ (I) 

(Hauptman, Fisher, Hancock & Norton, 1969; Haupt- 
man, Fisher & Weeks, 1971; Hauptman, Weeks & 
Norton, 1969; for a related procedure see also Karle, 
1970).* The quantity 

R3= 4aa3~ - [3(IE1Ezl 2 + IEzE3I z + IEzEll 2) + IEII z 

+ IEzl 2 + lEaf2- ~1, (2) 

* The following abbreviations are employed in this paper: 
IEd=lEnil, ~o~=~o~e, i=1 ,2 ,3  in which it is assumed that 
hi + h2 + h3 = 0, so that cos (~01 + ~02 + q~3) is a structure invariant. 
A is defined as: 

2o- 3 
A =  -~3if  IEIE2E3[ , 

N 
where o-n = Y Zd ~, Zj is the atomic number of the atom labeled 

j = l  

j, and there are N atoms in the unit cell. 

is a function only of the normalized structure-factor 
magnitudes of the reflections forming the ~2 triple. The 
function 

~= <(]Ek],/2_ ]E-l,/2) (]E, u +kl,/2_ IE l-re) 
×(I r,~-,,3+k,''/2- ji~l'/Z) llEkl>t>k , (3) 

is a restricted average over all reflections k, such that 
IEkl is greater than some threshold t, and IEI '/2 is the 
average value of the square root of the normalized 
structure-factor magnitudes for all reflections in recip- 
rocal space. Analysis of the evaluation of cosines by 
the triple-product formula for two androstane struc- 
tures (Hauptman, Fisher & Weeks, 1971) indicated that 
2.0 was a suitable value for the constant t. The K 
values of 305.2 for estradiol.urea and 954-7 for 6~- 
fluorocortisol were chosen in such a way as to make 
the empirical distribution of predicted invariants 
agree, as closely as possible, with the theoretical distri- 
bution (Hauptman, 1970a; for a related distribution, 
see Cochran, 1955). 

The same cosine invariants were evaluated using the 
(D-S) /S  formula (Hauptman, 1970b), 

cos (qh + ~o2 + ~o3)~-(O-S)/S , (4) 
where 

O=<(IE_~3+dz--1) l lEkl>t, lEhl+d>t>k (5) 
and 

S=<(IE-n3+klZ--1) l lEkl> t>k 
+<(IE_~3+~[z--1) l lE,,~+kl>t>k. (6) 

The threshold t is an arbitrary fixed number exceeding 
unity, and D, for example, is the average of 
([E_h3+kl 2 -  1) taken over all reflections k such that 
IEkl > t and IE-,,x+kl > t. The optimum value of t is 
unknown. On the one hand, it is desirable that it be 
large, because if t is large, then S is large and errors 
that occur in the numerator of (4) are not unduly 
exaggerated by division by S. However, if t is large, 
then both the numbers of contributors to the averages 
in (5) and (6) are small and errors arising from the 
finite sampling are large. If, on the other hand, t is 
chosen to be small so as to increase the numbers of 
contributors to these averages and thus to reduce the 
errors arising from the finite sampling, then S is small 
and whatever errors occur in the numerator of (4) are 
exaggerated by division by the small number S. As a 
compromise, the D and S terms were computed using 
t =  1.0 and t =  1.3. For structures of this complexity 
(20-30 nonhydrogen atoms in the asymmetric unit), it 
has been found that the predicted cosine values are 
erratic if there are fewer than 200 contributors to D. 
A threshold value of t = 1.3 results in a minimum of 
approximately 400 contributors to D. As the com- 
plexity of the structure increases, the minimum number 
of contributors to D increases, but t remains approx- 
imately constant. 

Because of the extensive overlap in the Patterson 
function of real crystals, the (D-S) /S  formula yields a 
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greater percentage of negative cosine invariants than which is referred to as the MDKS formula. The 
is actually observed, when the structure is solved and constant K of the MDKS formula is evaluated so that 
the true values of the invariants are computed. There- within each group of triples having approximately the 
fore, equation (4) has recently been altered, by the same value of A, the proper proportion of invariants, 
introduction of scaling parameters, K and M, to give as predicted by theory, will be negative. The value for 
the relationship: M is then found such that the empirical distribution of 

cosine invariants agrees with the theoretical distribu- 
C O S  ((/91 @ (/9 2 -'}- (D3) ~-~ M(D-KS) ,  (7) tion (cf. Hauptman, 1970a). In these structures, M and 

K were found to be independent of A. The actual values 
Table 2. Values of  the scaling constants M and K of M and K are presented in Table 2. 

used in the MDKS formula [equation (7)] 

Threshold (t = 1.0) Threshold (t = 1.3) 
Structure M K M K 
Estradiol urea 8.72 0.78 3.30 0.65 
60~-Fluorocortisol 14.57 0.64 6.04 0.58 

P h a s i n g  t h e  b a s i c  s e t  

Initial attempts to phase the estradiol.urea complex, 
using two-dimensional cosine invariants computed by 

Table 3 . 2 D  triples for estradiol, urea having A > 1.0, for which the calculated value of the quantity (D-S)/S 
was positive 

The terms D and S are defined in equations 5 and 6, respectively. 

VECTOR TRIPLE A COS 

1 20  1 0 - 1 4  5 0 - 6  - 6  0 T . 0 2  1 
2 20 1 0 - 2 0  0 - L  0 -1  1 6 . 5 9  1 
3 20 1 0 -13 5 0 -7 -6 0 6.16 I 
4. 0 1 2 0 -4. 3 0 3 -5 6. I I  1 
S 0 I 2 0 4 3 0 -5 -5 5.67 I 
6 21 2 0 -14. 5 0 - 7  - 7  0 5 . 0 8  1 
7 20 I 0 - 2 0  0 -3 0 - I  3 4..96 l 
8 0 1 2 0 - 3  3 0 2 - 5  ~*.75 1 
9 30 1 0 -30 0 - I  0 - I  I 4..71 I 

10 o I 2 0 I 3 0 - 2  - 5  4. .68 1 
I I  20 I o -30 I o 1o -2 o 4 . 4 . 6  1 
12 21 2 0 -13 5 0 - 8  - 7  o 4 . 1 8  l 
13 0 4 3 0 -I 4' 0 -3 -7 4..01 I 
14 0 I I o I 4 o - 2  - 5  3 . 9 5  I 
15 0 I 2 0 3 7 0 -4. - 9  3.91 1 
16 20 1 0 -10 2 o -10 -3 0 3.74. 1 
17 20 I o - I I  5 o -9 -6 0 3.69 l 
18 0 4. 3 o 1 4 o - 5  - 7  3 . 0 7  l 
19 o 1 2 o - 3  5 o 2 - 7  3 . 6 0  1 
20  0 1 2 0 - 5  7 0 4. - 9  3 . 5 0  l 
21 20 1 0 - 1 2  6 o - 8  - 7  o 3.4.2 z 
22 20 1 0 - 1 3  6 o - 7  - 7  0 3 . 3  e, 1 
23 21 2 0 - 2 1  0 - 5  0 - 2  5 3 . 2 6  1 
24 0 1 2 0 - 4  5 0 3 - 7  3 . 2 1  1 
25 0 1 2 0 - 3  7 0 2 - 9  3 . 2 0  1 
26 29 3 0 -14.  5 0 -15 -8 o 3 . 1 8  I 
27 o I I o 3 2 o -4 - 3  3 . 0 6  I 
28 0 I I o -4 3 0 3 - 4  3 . 0 0  I 
29 l 3 o 14 5 o -15 -8 o 2.99 I 

+ # 
VECTOR TRIPLE A COS 

69  6 2 o 11 6 0 -15 - 8  0 1.70 I 
70 20 3 o - 5  5 0 - 1 5  - 8  o 1 . 6 9  l 
71 44 3 0 11 5 0 - 1 5  - 8  0 1 . 6 9  | 
72 10 3 0 5 5 0 - 1 5  - 8  0 1.67 I 
73 18 1 0 -144 5 0 -44 - 6  0 1 . b 6  1 
74. 20 0 5 -21 0 5 I 0 - I 0  1.64. -1 
75 20 1 0 0 2 0 - 2 0  - 3  0 1 . 6 3  1 
76 0 1 ~. 0 I 5 0 -2 - 9  1 . 6 3  I 
77 21 2 0 -4. 6 0 -17 - 8  0 1.63 1 
78 18 0 1 2 0 2 - 2 0  0 - 3  1 . 6 2  1 
79 9 1 0 14. 5 0 - 2 3  - 6  0 1 . 6 1  1 
80 20 0 I -20 0 3 0 0 -4. l .bO I 
81 18 I 0 - I I  6 0 -7 -7 0 1.59 1 
82 30 I 0 -17 4 0 -13 -5 0 1.55 I 
83 30 0 l -17 0 8 -13 0 -9 1.53 1 
84. 20 0 I 0 0 4. -20 0 - 5  1.52 I 
85 18 I 0 - I I  5 0 -7 -6 0 1.52 1 
86 7 1 0 21 2 0 - 2 8  - 3  0 1 . 5 1  1 
87 0 2 2 0 -5 5 0 3 - 7  1.51 1 
88 5 I 0 - 1 2  6 0 7 - 7  0 1.51 I 
89 20 0 I I 0 6 -21 0 -7 1.49 I 
90  0 2 2 0 3 5 0 - 5  - 7  1 . 4 . 9  1 
91 0 4. I 0 - I  4 0 - 3  -5 1 .4 .8  1 
92 18 0 I - I  0 3 -17 0 -4 1.4.7 I 
93 8 I 0 13 I 0 -21 -2 0 1.4.6 - I  
94 30 0 I -15 0 3 -15 0 -4. 1.45 I 
95 0 1 3 0 - 3  4. 0 2 - 7  1 . 4 4  1 
96  18 I o - 1 3  5 o - 5  - 6  o 1.43 I 
97 0 3 2 0 - 5  5 0 2 - 7  1.4 '3 - 1  
98 18 0 1 - 2 0  0 3 2 0 - 4  1 . 4 2  1 3 0  21  1 0 - 1 4  s 0 - 7 - 6  0 2 . 9 9  1 

31  8 1 0 7 7 0 - 1 5 - 8  0 2 . 8 5  1 9 9  3 0  0 1 - 2 2  0 7 - 8  0 - 8  1 . 4 . 2  1 
3 2  0 i 4. 0 3 5 0 - 4 . - 9  2 . 8 4 .  1 1 0 0  2 0  0 i - 2 1  0 5 ~ 0 - 6  1 . 4 . 1  1 
33  2o o I 1 o 4 - 2 1  o-5 2.83 t lOI 18 i o - 1 3  8 o - 3 - 9  o 1.39 1 
3 *  2o o 3 I o 4. - 2 1  o - 7  2 . 7 6  1 102 0 3 2 0 1 3 0 - 4 . - 5  1 . 3 8  1 
3 5  z o  1 0 - 9  5 0 - 1 1 - 6  0 2 . 6 6  1 1 0 3  8 1 0 - 1 3  5 0 5 - 6  0 1 . 3 8  1 
36 14. 5 o - 1 4  o - 5  o - 5  5 2 . 6 3  1 lO4. o 4. 1 o 1 4. o - 5 - s  1 . 3 7  1 
3 7  8 1 o - 1 4 .  5 o 6 - 6  o 2 . 6 ~  t 1o5 0 4 2 0 - 1  4. 0 - 3 - 6  t . 3 6  1 
3 8  21  2 0 - 2 2  0 - 7  0 - 2  7 2 . 5 3  1 1 0 6  2 2  0 0 - 9 - 5  0 - 1 3  5 0 1 . 3 6  1 
3 9  0 z 2 0 1 5 0 - 2 - 7  2 . 5 3  1 1o7 18 o I - 1 9  o 3 1 o - 4 .  1 . 3 4 .  1 
4 o  21  2 o - 7  3 o - 1 4 . - 5  o 2 . 5 2  1 1o8 18 0 1 2 0 4. - 2 0  0 - 5  1.34.  1 
~ 1  21  2 o - 1 o  3 o - 1 1 - 5  o 2 . 4 2  1 l O 9  18  1 o lO 2 o - ~ 8 - 3  o 1 . 3 3  1 
• 2 0 3 3 0 - 1  4. o - z - ~  z .4 .1  l 110  1 0 3 zo 0 5 - 2 1  o - 8  1 . 3 2  1 
• 3 0 1 i 0 - 3  4. 0 2 - 5  2 .4 .0  1 111 9 1 0 -14 .  5 0 5 - 6  0 1 . 3 2  1 
• ~ o 1 3 o 1 4. o - 2 - 7  2 . 3 7  1 1 1 2  2o o I - 2 1  o 2 1 o - 3  1 . 3 1  - 1  
• 5 0 I 3 0 - 4 .  3 0 3 - 6  2 . 3 6  1 1 1 3  0 3 4. 0 - 5  5 0 2 - 9  1 . 3 1  - 1  
4 6  0 1 4. 0 - 3  5 0 2 - 9  2 . 3 2  1 114. 6 3 0 9 5 0 - 1 5 - 8  0 1 . 3 1  1 
4? 0 1 I 0 2 5 0 -3 - 6  2.32 l 115 0 I 3 0 -3 6 0 2 -9 1.30 I 
4.8 20 3 0 -20 0 -5 0 -3 5 2.30 1 I16 18 0 l -1 0 44 -17 0 -5 1.30 1 
4.9 I0 3 0 -14. 5 0 4 -8 0 2.27 I 117 7 3 0 -22 5 0 15 -8 0 1.30 1 
50 30 0 1 -13 0 3 -17 0 -4. 2.27 l 118 20 I 0 -14. 4 0 -6 -5  0 1.29 I 
51 28 0 0 -8 -1 0 -20 1 0 2.23 l I f 9  21 0 2 -1 0 4. -20 0 -6 1,29 1 
52 7 l 0 8 7 0 - 1 5  - 8  0 2 . 1 6  1 120 I 0  0 0 20 0 1 - 3 0  0 - 1  1 . 2 8  - 1  
53 0 I 2 0 - I  4. 0 0 -6 2.15 I 121 0 4. 3 0 0 6 0 -4. -9 1.27 I 
54 0 44 I 0 -Z 2 0 -3 -3 2.09 I 122 3 0 2 17 0 44 -20 0 -6  1.26 I 
55 8 1 0 20 1 0 - 2 8  - 2  0 2 . 0 3  1 123 3 1 0 - 1 1  6 0 8 - 7  0 1 . 2 6  1 
56 0 4. 3 0 -2 5 0 -2 -8 2.00 1 124 6 0 0 14. 0 5 -20 0 -5 1.25 I 
57 0 3 2 0 -I 3 0 -2 -5 2.00 I 125 9 I 0 -13 5 0 44 -6 0 1.24. -I 
58 7 I 0 -13 5 0 6 -6 0 1.96 I 126 6 2 0 -20 3 0 It,, -5  0 1.23 I 
59 0 1 I 0 2 2 0 -3 - 3  1.94. 1 127 0 3 44 0 I 5 0 -44 -9 1.21 - I  
60 10 2 0 - 6  6 0 -4. - 8  0 1 . 9 0  1 128 0 1 4. 0 - 3  44 0 2 - 8  1 . 2 0  1 
61 9 I 0 -15 8 0 6 -9 0 1.88 - I  129 0 2 2 0 -3  3 0 I -5 1.17 I 
62 21 2 0 -14. 4 0 -7 -6 0 1.85 I 130 0 3 3 0 0 44 0 -3  -7  I . 16  I 
63  0 3 2 0 -4.  3 0 1 - 5  1 . 8 4  - 1  131  0 44 2 0 - 3  3 0 - 1  - 5  1 . 1 3  1 
64 20 0 3 -21 0 7 I 0 - I 0  1.83 - I  132 4 3 0 -10 3 0 6 -6 0 1.10 I 
65  18 0 1 - 2 0  0 1 2 0 - 2  1 . 7 6  1 133  0 0 44 l 0 4. - 1  0 - 8  1 . 0 2  - 1  
66 18 0 1 - 3 0  0 1 12 0 - 2  1 . 7 4  - 1  134 0 2 0 0 1 3 0 - 3  - 3  1 . 0 1  I 
67 21 2 0 - I S  4 0 - 6  - 6  0 1 . 7 4  1 135  0 2 0 0 3 5 0 - 5  - 5  1 . 0 1  1 
68  10 2 0 4. 3 0 -14 .  - 5  0 1 .74.  1 136 22 0 0 - 2  0 - 5  - 2 0  0 5 ! . 0 0  1 

* True value of the cosine invariant. 

A C 2 8 B  - 1 4 "  
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the tr iple-product formula  proved unsuccessful. The 
same cosine invariants were then re-evaluated using the 
(D-S)/S formula  [equation (4)], and only those in- 
variants for which (D-S)/S > 0 were retained for use in 
determining phases. The resulting set of  ~2 triples was 
assumed to have cosine invariant  values of  unity, and 
is presented in Table 3. The criterion that  the cal- 
culated value of  (D-S)/S be positive, in order for the 
invariant  to be accepted as having a value of  + 1, was 
a stringent restriction, since it resulted in the selection 
of  many fewer invariants than the theoretical number  
which should have values +1 .  For  example, among 
the invariants with A > 3, more than  98 % should have 
values of  + 1, but the (D-S)/S calculation resulted in 
the acceptance of  only 65 % of  the invariants with A 
values in this range, and these were invariants for 
which the (D-S)/S values were highest. Among  the 
groups of  invariants having lower A values, slightly 
less than 50% of the invariants were accepted, a l though 
even in the group of  invariants with 1.0 < A < 1-5, more 
than 75 % should have values of  + 1. Initial phasing, 
based on this set of  cosine invariants,  led to the solu- 
t ion of  the estradiol,  urea structure, and it is this pro- 
cedure that  is described here in detail. The values of  

the cosine invariants indicated by the tr iple-product 
formula were sufficient to allow solution of  the 6c~- 
fluorocortisol structure by a similar phasing procedure. 
Only those aspects of  the phasing of  6~-fluorocortisol 
that  differ materially from the procedure followed for 
estradiol,  urea will be discussed. 

The list of  triples (Table 3), presumed to have cosine 
invariant  values of  + 1 based on the (D-S)/S calcula- 
tions, was inspected in order to find a set of  reflections 
that  interacted with many other reflections and which 
would consequently be suitable for selecting an origin 
and enant iomorph.  The reflections 043, 20,1,0, 
and 104 interacted well and also satisfied the parity 
restrictions placed on the origin-defining reflections in 
space group P212121 (Hauptman  & Karle, 1956); 
reflection 011 proved to be suitable for specifying 
the enan t iomorph  (Karle & Hauptman,  1956). These 
reflections, IEI values, and assigned phases, as well as 
the reason for the phase assignment, are displayed in 
Table 4 along with similar informat ion  for the other 
two-dimensional  reflections in the basis set. 

F rom invariants Nos. 1 and 37 (Table 3), it is ap- 
parent  that  

fPslo = fP2o. i,o = 0  • 

Table 4. Basis set for the estradiol, urea complex as determined from the two-dimensional invariants predicted 
by the MDKS formula 

The serial number(s) of the invariant(s) in Table 3 used for each phase assignment are indicated. 

Invariant Invariant 
h k l E q~ number h k l E q~ number 
0 1 1 2.01 z r / 2  Enantiomorph 0 2 8 1.21 0 56 
0 4 3 3.31 0 Origin 0 0 4 1.69 0 80 
1 0 4 2.69 0 Origin 20 0 5 2.34 - z  r/2 84 

20 1 0 4.15 0 Origin 20 3 0 1-93 0 48 
8 1 0 1.72 0 1 and 37 1 0 10 1.60 0 64, 74* 

20 0 1 2.74 -rr/2 2 0 2 0 1"51 0 75 
0 3 2 1"87 -n /2  27 1 0 6 1.30 0 89, 100 
0 3 4 1"80 -n /2  28 13 1 0 1"54 -rt/2 93* 
0 2 5 2.72 rc 43 10 3 0 2"11 z~ 70 and 72 
0 1 4 3.01 re/2 14 10 2 0 2.40 ~z 16 
0 3 7 2.20 n/2 13 30 1 0 2-24 0 11 
0 5 7 2"01 re/2 18 11 5 0 1"93 - n / 2  41 
0 3 6 1"65 --zr/2 47 9 6 0 2"18 ~z/2 16 
0 1 3 2"47 ~/2 45, 57 0 4 2 1"55 rc 106 
0 1 2 2-80 re/2 10 30 0 1 3.47 --re/2 9 
0 3 3 2"45 re/2 8 10 0 0 0.97 0 120" 
0 3 5 2.52 re/2 4 1 0 8 1"78 0 133" 
0 5 5 2"15 re/2 5 14 5 0 3"28 ~z 

20 0 3 2-50 -re/2 7 6 6 0 2.42 0 1 
0 4 9 2.05 r~ 15, 20 7 7 0 2"30 -re/2 6 
0 2 7 1.84 rc 19, 42 13 6 0 1"60 - n / 2  22 
0 4 5 1"76 0 24 15 8 0 3.73 - n / 2  31 
0 2 9 1-69 zc 25 29 3 0 1-21 - n / 2  26 

21 0 7 2-08 --z~/2 34 1 3 0 1"30 n/2 29 
21 2 0 3"07 -re/2 38 14 0 5 1"75 zt/2 36 
0 1 5 1"67 rr/2 39, 76 7 3 0 1"27 ~z/2 40 

21 0 5 1.96 -re/2 23, 33 4 8 0 1"67 rc 49 
28 0 0 2"27 rc 51 4 3 0 1"27 0 68 
28 2 0 1.48 0 55 5 5 0 1"16 2z/2 72 
0 4 1 1.18 0 54,91 6 0 0 2"26 zr 124 
0 0 6 1"39 r~ 53 
0 2 2 1"66 0 59, 87 

* Phased incorrectly, due to undetected negative invariants. 
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(Table 5 may be consulted to aid in transforming the 
phases of reflections to correspond to sign changes in 
the indices). From invariant No. 2, the phases of 
011 and 20,1r0 determine ~020,0,t to be - n / 2 .  The 
systematic analysis of those invariants in which the 
phases of two reflections were known, thereby deter- 
mining the phase of the third reflection, yielded a set of 
49 phases. Table 4 lists the order in which the phasing 
proceeded, together with the serial number(s) of the 
invariant(s) determining the phase. The only conflicts 
in phasing detected during this process concerned 
01 5 and 055. Decisions made regarding these con- 
flicts, based on A values and calculated cosine values, 
proved to be correct. It was observed that a block of 13 
strongly interacting reflections could be introduced 
into the basic set by assigning a phase to 14 t 5t0. When 
~o~4,5,o was assumed to be n, three resultant phase 
assignments (6, 6 O; 4 8 O; and 6 0 O) agreed with Ya 
indications, and this phasing was therefore considered 
to be correct. 

Table 5. Phase transformations corresponding to sign 
changes o f  indices (c~ = + n/2, fl= 0 or n) 

hkl h~i hkl hkl 
O U l l O~ - -  O~ O~ ~ O~ 

O U g  O~ - - ~  - - ~  

g o u  o~ o~ - -  ~ - o ~  

l l O U O~ ~ O~ - -  O~ O~ 

u g o  o~ - -o~  o~ - -  o~ 

UllO O~ O~ ~ O~ - -  O~ 

ogu ~ p ~+~ ~+p 
uog B ~+P ~ ~+B 
guo B n+~ n+B B 
g g g  f l  f l  f l  f l  

it eventually became n also. An E map, constructed 
from this tangent-formula output, revealed the 24 
nonhydrogen atoms of the complex among the highest 
peaks in the map. The true values of the phases of the 
020 and 022 reflections proved to be 0, in agree- 
ment with their initially determined values, but in 
conflict with the tangent-formula calculations of n, 
which were based on 113 and 134 contributors, respec- 
tively. This miscalculation of the tangent formula is a 
result of the unusual statistical distribution of negative 
cosine invariants and illustrates clearly how a too 
early and too heavy dependence on the tangent formula 
may lead to incorrect phasing. 

Less interaction of the two-dimensional reflections 
having large [El values was observed in the structure of 
6~-fluorocortisol. Consequently, the working set of 
triples having A < 1.00, which could be considered to 
have values of + 1 based on triple-product or M D K S  
calculations, was composed of approximately 150 
invariants. In addition to the origin and enantiomorph 
defining reflections, four of the Ya predictions that 
were considered most reliable were required to build, 
successfully, a basic set of 51 input phases. Three of 
these phases were for three-dimensional reflections, 
each of which occurred in invariants with two-dimen- 
sional reflections for which A was greater than 2.5 and 
the computed cosine was nearly 1.0, so that they could 
be phased with relative certainty. Twenty-two of the 
nonhydrogen atoms were located in the first E map, 
and the remaining five atoms of the steroid A ring were 
located in a Fourier synthesis based on the E map po- 
sitions. Four of the 51 input phases were determined to 
be incorrect. 

In Table 3, the triples that have true cosine invariant 
values of - 1  are so indicated and constitute a 10% 
error in invariant evaluation. Fortunately, they caused 
incorrect phase assignment to only 4 of the 62 reflec- 
tions used as tangent-formula input (a 6% error). 
Starting from this basis set, the tangent formula was 
used to determine 238 additional phases, and 5 or 
more contributors were required for each new phase. 
The 62 input phases were held constant during all 
cycles of tangent-formula refinement. 

During the attempts to determine phases using 
cosine invariants computed by the triple-product 
formula, the space group invariants 020 and 
022 were involved in numerous conflicts between 
cosine calculations and Y l indications. Furthermore, 
when these reflections were among those whose phases 
were input for the tangent formula, the refinement 
invariably altered the phase assignment by n. When 
phasing was based on invariants computed by the 
(D-S) /S  formula, the ambiguities regarding the phases 
of 020 and 022 were removed and both phases 
were determined to be 0, in agreement with weak Y l 
indications. The tangent formula calculated the phase 
of 020 to be n through all seven cycles of refinement, 
and, although 90 z z was calculating 0 in early cycles, 

Statistical distribution of invariant values 

The true distributions of negative cosine invariants, as 
a function of A, for triples composed of two-dimen- 
sional (centric) reflections in the estradiol, urea and the 
6c~-fluorocortisol structures, are compared with the 
theoretical probability distribution of negative in- 
variants in Table 6. At all A values examined, the 
number of negative invariants for estradiol.urea is 
greater than that predicted by theory, and the excess of 
negative invariants increases as A increases. This 
observation explains the numerous conflicts en- 
countered in the early attempts to solve this structure. 
In comparison, 6cvfluorocortisol has fewer negative 
invariants than are theoretically predicted, except in 
the 2 < A < -range, and even in this range the number of 
excess negative invariants is small. This difference in 
percentages of negative invariants in the two structures 
is directly related to the difference in intensity statistics 
seen in Table 1. Structures having large values for the 
averages (([EI2-1) z) and (([EI2-1) 3) may be ex- 
pected to have high percentages of negative invariants, 
especially for large A. 

To compare the relative accuracy with which the 
cosine invariants, cos (~01+92+~0~), are calculated by 
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Table 6. Percentages of  negative two-dimensional cosine 
invariants 

Estradiol. urea 
A No. of 

R a n g e  invariants 
1"0-1-5 282 
1"5-2-0 87 
2.0-3-0 64 
3"0-7.0 48 

6~-Fluorocortisol : 
1 "0-1"5 154 
1"5-2.0 34 
2.0-3.0 22 
3.0-7.0 9 

% Negative 
% Negative (theoretical)* 

24 22.3 
20 14.8 
11 7.6 
10 < 2 

17 22.3 
9 14.8 
9 7.6 
0 < 2 

* Percentage negative 2D invariants= 100/[1 +exp (A)]. 

different methods, the sets of invariants calculated by 
the triple-product formula [equation (1)] and the 
MDKS formula [equation (7)] for estradiol.urea were 
each arranged in increasing order of their calculated 
values, after first breaking the triples into groups 
having similar A values. Each set of invariants was 
then broken into quarters, and the percentage of actual 
negative invariants occurring in each quarter was 
computed and is displayed in Table 7. For example, 
30% of the invariants, with A values in the 1.0-1.5 
range, whose values as computed by MDKS ( t= 1.0) 
ranked in the lowest quarter for all invariants in this A 
range, actually had values of - 1. It is encouraging to 
note that for both formulas, and at nearly all A values, 
the greatest percentages of negative invariants are 
found among the quarter with lowest calculated in- 
variant values. Also, in general, the percentage of 
negative invariants in each higher ranking quarter is 
less than the percentage in the next lower quarter. The 
deviations from this trend probably result from the 
smallness of the sample size. A comparison of the re- 
sults for the two formulas shows that MDKS, especial- 
ly with a threshold value of 1.0, is more successful than 

Table 7. Percentages of  actual negative invariants .for 
estradiol, urea, occurring in each quarter of  the predicted 

invariants sorted in increasing order 

The 1st quarter consists of those invariants which had the 
lowest computed values, and the 4th quarter consists of those 
invariants with the highest computed values. 

Quarter 
Formula A range 1st 2nd 3rd 4th 

1.0-1.5 30% 35% 23% 7% 
MDKS 1 "5-2.0 35 26 9 18 
(t = 1.0) 2.0-3.0 37 6 0 0 

3.0-7.0 38 0 0 0 
1.0-1.5 32 32 21 10 

MDKS 1.5-2.0 47 13 9 18 
(t= 1.3) 2.0-3.0 25 6 12 0 

3.0-7.0 38 0 0 0 
1.0-1.5 36 26 22 10 

Triple product 1.5-2.0 43 26 18 0 
(t = 2.0) 2.0-3.0 19 19 6 0 

3.0-7-0 23 0 8 8 

the triple-product formula in identifying the negative 
invariants in the most useful, higher A ranges. That is, 
the negative invariants occur more frequently in the 
lower ranking quarters. 

An important question which now arises is what 
restrictions sholald be placed on the invariants that are 
to be accepted as forming the basis of a phase determi- 
nation, so that a maximum number of triples are avail- 
able but a minimum number of triples with negative 
cosine invariants are included in the working set. To 
answer this question, the invariants were again divided 
into four groups having similar A values (1.0-1.5,1.5-2.0, 
2.0-3.0, and 3.0-7.0), and sorted according to their 
values as predicted by the triple-product and MDKS 
formulas. Within each group of triples with similar A 
values, certain percentages of the highest ranking in- 
variants were accepted as having values of unity, and 
the total number of invariants available for use, as 
well as the percentage error (i.e. the percentage of 
invariants accepted as having values of +1 whose 
true values were - 1) in several cases, are presented in 
Table 8. If 100% of the invariants which should be 
positive, based on the MDKS ( t= l .0 )  calculations, 
are accepted, then 400 estradiol.urea invariants are 
available for use, and 17 % of these invariants have true 
cosine values of - 1. Since 77 % of the invariants with 
A values in the range 1-0-1.5 should, in theory, have 
values of + 1 (as should 85 % of the invariants having 
1.5 < A < 2.0), then accepting 50 % of the invariants 
which 'should be positive' as calculated by MDKS 
means that the highest ranking 38.5 % of the invariants 
with A values in the range 1-0-1-5 were accepted, as 
were 42.5 % of the highest ranking invariants having A 
values in the range 1.5-2.0. The results shown in Table 
8 demonstrate that, for both structures, if all invariants 
with 1 .0<A<7.0  are considered, approximately the 
same amount of error is made by using the results of 
either formula. If only 50% of the highest ranking 
invariants that should be positive are accepted, the 
error is reduced by 3-5 % but the number of available 
triples is only about half the number available if 100 % 
of the invariants that should be positive are accepted. 
If it is required that a given triple must pass restric- 
tions placed on its calculated value from both formulas 
simultaneously, the percentage error is reduced an 
additional 3-4%, but only in the case where 50% of 
the invariants that should be positive are accepted. 

The data presented in Table 9 show a further break- 
down of the percentage of negative invariants for 
estradiol.urea that are accepted as positive. If A < 2, 
the requirement that the computed value be among 
the upper 50 % of the invariants expected to be posi- 
tive, as predicted by both formulas, results in sub- 
stantial reduction in error. If A > 2.0, restriction to the 
highest 75 % of the invariants predicted to be positive 
by MDKS greatly reduces the errors encountered. 
Further restriction only serves to reduce the number of 
available triples, and the need for corroboration be- 
tween the formulas is not evident. 
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Table 8. Comparison o f  criteria for  acceptance of  predicted invariants 

Estradiol. urea 6e-Fluorocortisol 

% of Number of Number of 
presumed positive invariants invariants 

Formula invariants accepted accepted % error accepted 

MDKS (t = 1.0) 

Triple product (t = 2.0) 

MDKS and triple product 

% error 

100% 400 17% 179 13% 
75 303 12 134 13 
50 197 12 89 9 

100 400 16 179 11 
75 303 16 134 10 
50 197 13 89 8 

100 364 16 161 12 
75 247 12 107 10 
50 130 8 66 5 

A 
range 

1.0-2"0 

2.0-7.0 

Table 9. Percentage negative invariants accepted 
as positive for estradiol, urea 

% of 
presumed 
positive 

invariants MDKS Triple product MDKS and 
accepted (t = 1.0) (t = 2.0) triple product 

100% 21% 19% 19% 
75 15 19 16 
50 16 16 10 

100 9 8 8 
75 1 5 2 
50 0 6 0 

Conclusion 

The necessity of acquiring a strong base of correctly 
phased reflections before beginning tangent formdla 
refinement, is demonstrated by the ambiguous be- 
havior of the highly interacting 020 and 022 reflections 
of estradiol.urea. The simplicity and effectiveness of 
consistently phasing a basic set of two-dimensional 
reflections from accurately computed cosines have 
been demonstrated. While the triple-product formula 
was satisfactory, and perhaps preferable, for com- 
puting cosine invariants for 6c~-fluorocortisol, it is 
apparent that the extensive overlap in the Patterson 
function of estradiol, urea introduced elements not in- 
corporated in the derivation of the triple-product 
formula. In the derivation of the M D K S  formula, the 
problem of overlap has been considered, and the accu- 
racy of the computed cosines for estradiol.urea 
illustrates the success of this formula. It is hoped that 
the unambiguous phasing procedure, and the analysis 
of the comparison between the predicted and the ob- 

served true values of the structure invariants described 
here will provide useful guidelines for future structure 
solutions. 

This work was supported in part by U.S.P.H. Re- 
search Grant No. CA 10906-02 from the National 
Cancer Institute. 
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